МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Департамент образования Вологодской области Управление образования Администрации г. Вологды МОУ "СОШ № 14"

РАССМОТРЕНО

Педагогический совет

Протокол № 1 от «30» августа 2023 г.

УТВЕРЖДЕНО

И. о. директора

Н. А. Неклюдова

Приказ №103 от «30» августа 2023 г.

Рабочая программа

по элективному курсу
«Физическая химия»
средней общеобразовательной программы
среднего общего образования
на период 2020-2022 г.

Разработчики: учитель химии высшей категории Наумова Елена Юрьевна

1. Пояснительная записка

Данная рабочая программа составлена на основании нормативных документов:

- 1. Федерального компонента государственного образовательного стандарта основного общего образования по химии (профильный уровень)2004 г. (приказ Министерства образования Российской Федерации № 1089 от 05 марта 2004 года "Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования".)
- 2. Федерального базисного учебного плана (приказ Министерства образования Российской Федерации № 1312 от 09 марта 2004 года).
- 3. Регионального базисного учебного плана и примерных учебных планов для образовательных учреждений Вологодской области, реализующих программы общего образования (приказ Департамента образования Вологодской области № 574 от 31 марта 2005 года «Об утверждении регионального базисного учебного плана и примерных учебных планов для образовательных учреждений Вологодской области, реализующих программы общего образования»).
- 4. Приказа Министерства образования РФ от 05.03.2004 г. № 1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования» (в ред. приказов Минобрнауки России от 03.06.2008 N 164, от 31.08.2009 N 320, от 19.10.2009 N 427, от 10.11.2011 N 2643, от 24.01.2012 N 39, от 31.01.2012 N 69).
- 5. Постановления Главного государственного санитарного врача Российской Федерации «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях» от 29.12.2010 № 189 (зарегистрировано в Минюсте Российской Федерации 03.03.2011 № 19993).
- 6. Постановления Главного государственного санитарного врача РФ от 29.12.2010 N 189 (ред. ОТ 24.11.2015) "Об утверждении СанПиН 2.4.2.2821-10 "Санитарноэпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях" (вместе с "СанПиН 2.4.2.2821-10. Санитарноэпидемиологические требования условиям И организации обучения общеобразовательных организациях. Санитарноэпидемиологические правила И нормативы", зарегистрировано в Минюсте России 14.08.2015 N 38528).
- 7. Постановления Главного государственного санитарного врача Российской Федерации от 24.11.2015 N 81 "О внесении изменений N 3 в СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения, содержания в общеобразовательных организациях» (зарегистрировано в Минюсте России 18.12.2015 N 40154).
- 8. Приказ Минобрнауки России от 30.03.2016 N 336 "Об утверждении перечня средств обучения и воспитания, необходимых для реализации образовательных программ начального общего, основного общего и среднего общего образования, соответствующих современным условиям обучения, необходимого при оснащении общеобразовательных организаций в целях реализации мероприятий по содействию созданию в субъектах Российской Федерации (исходя из прогнозируемой потребности) новых мест в общеобразовательных организациях, критериев его формирования и требований к функциональному оснащению, а также норматива стоимости оснащения одного места обучающегося указанными средствами обучения и воспитания" (зарегистрировано в Минюсте России 07.04.2016 N 41705).
- 9. Основной образовательной программы среднего общего образования МОУ «СОШ №14»
- 10. Устава МОУ «СОШ №14»

- 11. Учебного плана СОО МОУ «СОШ №14» для профильных классов по ФГОС СОО
- 12. Авторского учебного пособия элективного курса для технологического и естественно-научного профилей обучения, авторы- составители Белоногов В. А., Белоногова Г. У.
- 13. Положения о рабочей программе МОУ «СОШ №14»

Учебно-методический комплект, используемый для реализации рабочей программы:

- 1. Программа элективного курса «Физическая химия» Авторы: В. А. Белоногов, Г. У. Белоногова. Сборник примерных рабочих программ. Элективные курсы для профильной школы: учеб. пособие для общеобразоват. организаций / [Н. В. Антипова и др.]. М.: Просвещение, 2019. 187 с.— (Профильная школа).
- 2. Учебное пособие для общеобразовательных организаций: В. А. Белоногов, Г.У. Белоногова. Физическая химия. 10-11 классы. М. :Просвещение, 2019.

Цели и задачи, направленные на реализацию данной рабочей программы

Актуальность курса обусловлена, во-первых, многообразием и сложностью химических процессов, протекающих в окружающем мире. Во-вторых, в настоящее время ряд вопросов школьного курса химии изучается ознакомительно или вообще не рассматривается, например, теория кислот и оснований, мало внимания уделяется основам химической термодинамики и кинетики, которые являются основными при изучении химических реакций. В химической термодинамике на основе сравнения некоторых свойств веществ и предполагаемых продуктов реакции делаются выводы о возможности и глубине протекания процесса. Химическая кинетика рассматривает механизм процесса, т. е. путь, которым исходные вещества превращаются в продукты, и его скорость. В учебном пособии «Физическая химия» авторы предлагают темы: 1. Химическая термодинамика. 2. Химическая кинетика. 3. химическое равновесие. 4. Поверхностные явления. В рабочую программу элективного курса мною включена ещё одна тема «Химические реакции и процессы», позволяющая учащимся расширить представления о типах реакций, особенностях химических процессов.

Цель элективного курса:

— расширение, углубление и обобщение знаний о химическом процессе, причинах и механизме его протекания; — развитие познавательных интересов и творческих способностей учащихся через практическую направленность обучения химии и интегрирующую роль химии в системе естественных наук.

Основные задачи курса:

- обобщить и систематизировать знания учащихся о типах органических и неорганических реакций;
- углубить и дополнить представления учащихся о термодинамике и кинетики химических процессов, поверхностных явлениях, химическом равновесии; внутреннюю мотивацию учащихся, формировать потребности в получении новых знаний и применение их на практике, рассмотривая связи химии с жизнью, с важнейшими сферами деятельности человека;
- развивать математические способности учащихся при решении физико-химических задач; приёмы умственной деятельности, познавательных интересов, склонностей и способностей учащихся; умения самостоятельно работать с дополнительной литературой и другими средствами информации;
- привлечь учащихся к исследовательской проектной деятельности; совершенствовать экспериментальные умений и навыки в соответствии с требованиями правил техники безопасности.

В процессе указанных задач важно выявлять действие одних и тех же закономерностей в реакциях между неорганическими и органическими веществами, единство и взаимосвязь

химических превращений, их познаваемость, возможность управления химическими реакциями.

Целесообразно развивать умения учащихся применять теоретические знания для прогнозирования продуктов химических реакций, умения экспериментально подтвердить прогноз.

Распределение часов согласно авторскому курсу:

Курс рассчитан на 70 ч, по 1 часу в неделю, в 10-11 классах.

В 10 классе 35 часа /год (1 час в неделю).

В 11 классе 35 часа / год (1час в неделю).

Всего за два года обучения- 70 ч.

Изменения, внесенные в авторский курс.

В 10 классе изучаются две темы: 1. «Химические реакции и процессы», 2. «Химическая термодинамика».

В 11 классе изучаются три темы: 1. «Химическая кинетика», 2. «Химическое равновесие», 3. «Поверхностные явления».

2. Личностные, метапредметные и предметные результаты освоения конкретного учебного предмета, курса.

В качестве основного образовательного результата выступает система знаний и умений, формируемых при изучении каждого модуля программы и необходимых выпускнику для успешной итоговой аттестации. Изучая предполагаемый курс, учащиеся овладевают предметными результатами и должны:

знать:

- основные законы физической химии;
- основы химической термодинамики и термохимии;
- теплоёмкости веществ, их расчёты;
- способы определения возможности и направления течения самопроизвольных процессов;
- основы химической кинетики;
- гомогенные и гетерогенные каталитические процессы, закономерности и механизм их течения;
- адсорбция на твёрдых адсорбентах;
- сущность химического равновесия, определение оптимальных условий ведения химических процессов;
- основные методы интенсификации физико химических процессов; физико химические методы анализа веществ, применяемые приборы;
- современные представления о растворах;
- процессы перегонки, ректификации, экстракции;
- основы электрохимии;

уметь:

- - классифицировать химические реакции по все известным признакам классификации;
- составлять уравнения окислительно-восстановительных реакций, определять окислители и восстановители;
- прогнозировать окислительно-восстановительные свойства веществ, исходя из степени окисления, продукты реакций, учитывая влияние среды на характер протекания процесса; объяснять, почему происходят определенные химические реакции;
- составлять термохимические уравнения реакций и проводить расчеты по ним;

- характеризовать факторы, влияющие на скорость химической реакции и состояние химического равновесия;
- определять тип гидролиза по составу соли, характер среды, составлять молекулярные и ионные уравнения гидролиза;
- объяснять сущность электролиза расплавов и водных растворов электролитов;
- проводить: самостоятельный поиск научной информации о своей профессиональной деятельности с применением источников научно- популярных изданий, компьютерных технологий для обработки и передачи химической информации в различных формах, лабораторные исследования свойств жидкостей;
- определять: термодинамические параметры состояния систем, концентрацию реагирующих веществ, скорость химической реакции;
- составлять: алгоритмы определения основных термодинамических параметров;
- рассчитывать: тепловые эффекты, равновесные концентрации;
- строить: изотерму адсорбции по экспериментальным данным, фазовые диаграммы;
- экспериментально определять: параметры каталитических процессов, молярную массу растворённого вещества, коэффициент распределения;
- обосновывать: выбор методики эксперимента и лабораторного оборудования по конкретному заданию;
- находить: в справочной литературе показатели физико-химических свойств веществ и их соединений;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для объяснения химических явлений, происходящих в природе, быту и на производстве;
- экологически грамотного поведения в окружающей среде; понимания глобальных проблем, стоящих перед человечеством: экологических, энергетических и сырьевых;
- безопасной работы с веществами в лаборатории, быту и на производстве;
- определения возможности течения физико химических превращений в различных условиях и оценки их последствий.

В результате изучения элективного курса на уровне среднего общего образования у учащихся будут сформированы следующие предметные результаты. Учащийся научится:

- раскрывать на примерах роль физической химии в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между химией и другими естественными науками;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- проводить расчёты теплового эффекта реакции на основе уравнения реакции и термодинамических характеристик веществ;
- прогнозировать возможность и предел протекания химических процессов на основе термодинамических характеристик веществ;
- соблюдать правила безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать данные, касающиеся химии, в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности;

— устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний.

Учащийся получит возможность научиться:

- формулировать цель исследования, выдвигать и проверять экспериментально гипотезы о состоянии равновесия химических систем, энергетических эффектах процессов на основе термодинамических расчётов, о свойствах поверхности различных тел;
- самостоятельно планировать и проводить физико-химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;
- интерпретировать данные о тепловом эффекте, скорости реакции и влиянии на неё различных факторов, о состоянии равновесия, поверхностном натяжении, адсорбции, полученные в результате проведения физико-химического эксперимента;
- прогнозировать возможность протекания различных химических реакций в природе и на производстве.

Личностные результаты:

- формирование чувства гордости за российскую химическую науку;
- воспитание ответственного отношения к природе, осознание необходимости защиты окружающей среды, стремление к здоровому образу жизни;
- подготовка к осознанному выбору индивидуальной образовательной или профессиональной траектории;
- умение управлять своей профессиональной деятельностью;
- развитие готовности к решению творческих задач, умения находить адекватные способы поведения и взаимодействия с партнерами во время учебной и внеучебной деятельности; способности оценивать проблемные ситуации и оперативно принимать ответственные решения в различных продуктивных видах деятельности (учебная, поисково-исследовательская, проектная и т.п.);
- формирование химико-экологической культуры и научного мировоззрения. Метапредметными результатами освоения выпускниками средней (полной) школы программы по химии являются:
- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: анализ и синтез, сравнение, обобщение, систематизация; формулирование гипотез, выявление причинно-следственных связей, поиск аналогов; понимание проблемы;
- умение извлекать информацию из различных источников;
- умение пользоваться на практике основными логическими приёмами, методами наблюдения, моделирования, объяснения, решения проблем, прогнозирования и др.;
- умение выполнять практические и познавательные задания с использованием проектной деятельности на уроках и в доступной социальной практике;
- умение оценивать собственные поступки, умение слушать собеседника, понимать его точку зрения, принимать право другого человека на иное мнение.

Ключевые компетенции обучающихся 10-11 классов формируются через целостную систему универсальных знаний, умений, навыков, а также опыт самостоятельной деятельности и личной ответственности обучающихся. Познавательные:

- умение работать с химическими словарями и справочниками в поиске
- значений химических терминов;

- умение пользоваться предметным указателем энциклопедий и справочников для нахождения информации;
- умение пользоваться Интернетом для поиска учебной информации о химических объектах.

Коммуникативные:

- владение монологической и диалогической речью;
- умение вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника, признавать право на иное мнение).

Рефлексивные:

- самостоятельная организация деятельности (постановка цели, планирование, определение оптимального соотношения цели и средств и др.);
- владение навыками контроля и оценки своей деятельности, умением предвидеть возможные последствия своих действий;
- поиск и устранение причин возникших трудностей;
- владение умениями совместной деятельности: согласование и координация деятельности с другими ее участниками.

Профориентационная:

- испытывать потребность в выборе, в образовательной и профессиональной самоидентификации, в конструировании версий о продолжении образования;
- ставить и корректировать ближние и дальние цели, использовать внешние и внутренние ресурсы.

3. Содержание учебного предмета

10 класс

Тема 1. Химические реакции и процессы. (194)

Сущность химических реакций. Реагенты и продукты реакций. Реакционная способность веществ. Классификация химических реакций.

Степень окисления. Основные понятия теории окислительно -восстановительных реакций: окисление, восстановление, окислитель. Восстановитель, закон электронного баланса. Окислительно -восстановительная двойственность. Методы расстановки коэффициентов в окислительно - восстановительных реакциях. Общие закономерности протекания окислительно-восстановительных реакций водных растворах. Классификация В окислительно-восстановительных реакций. Электролиз растворов расплавов электролитов.

Реакции ионного обмена. Кислотно - основные взаимодействия в растворах. Протолитическая теория кислот и оснований Бренстеда, Лоури. Водородный показатель. (рН) раствора. Индикаторы. Гидролиз неорганических соединений. Обратимый и необратимый гидролиз солей. Факторы, смещающие равновесие гидролиза.

Комплексные соединения. Номенклатура комплексных соединений. Получение комплексных соединений.

Практические работы. 1. Осуществление различных реакций различных типов.

2. Влияние среды на протекание окислительно-восстановительных реакций с участием перманганата калия. 3. Электролиз воды, хлорида меди(II), йодида калия. 4. Реакции ионного обмена. 5. Гидролиз неорганических соединений. 6. Получение комплексных соединений.

Тема 2. Химическая термодинамика. (15ч)

Тепловые эффекты реакций. Экзотермические и эндотермические реакции. Термохимические уравнения. Внутренняя энергия систем. Первый закон термодинамики. Энтальпия. Понятие о самопроизвольных процессах. Энтропия. Второй закон термодинамики. Энергия Гиббса. Энергия Гельмгольца. Энтальпийный и энтропийный

факторы, их роль в направленности процессов. Прогнозирование направления реакций. Закон Гесса- основной закон термодинамики. Закон Кирхгофа.

Практикум по решению задач: термохимические расчеты. Вычисления по термохимическим уравнениям.

Практические работы. 7. Калориметрия.

11 класс.

Тема 1. Химическая кинетика. (14ч)

Скорость химической реакции. Основы теории активных столкновений и образования переходных комплексов. Энергия активации. Факторы, влияющие на скорость химической реакции. Константа скорости. Правило Вант - Гоффа. Катализ и катализаторы. Гомогенный и гетерогенный катализ. Ингибиторы. Промоторы. Каталитические яды. Ферменты. Механизм действия катализатора.

Практические работы. 1. Зависимость скорости химической реакции от концентрации реагентов. 2. Зависимость скорости химической реакции от температуры.

3. Каталитические реакции.

Практикум по решению задач. Расчетные задачи по кинетике.

Тема 2. Химическое равновесие. (4ч)

Химическое равновесие. Обратимые и необратимые реакции. Равновесные концентрации. Закон действующих масс. Константа химического равновесия. Факторы, смещающие равновесие. Принцип Ле Шателье.

Практические работы. 4. Химическое равновесие.

Тема 3. Поверхностные явления. (13ч)

Поверхностная энергия. Поверхностное натяжение. Смачивание и несмачивание, Растекание. Уравнение Юнга. Когезия и адгезия. Уравнение Дюпре-Юнга. Связь когезии и адгезии с жизнью. Клеи, краски, лакокрасочные материалы. Адсорбция. Адсорбция на поверхности жидкостей, твердых тел. Поверхностно-активные вещества (ПАВ). Хроматография.

Практические работы. 5. Измерение поверхностного натяжения жидкостей. 6. Сравнение поверхностной активности растворов веществ одного гомологического ряда. 7. Сравнение эффективности моющих средств. 8. Адсорбция уксусной кислоты активированным углем. 9. Обнаружение катионов Cu²⁺, Co²⁺, Ni²⁺ с помощью бумажной хроматографии.

Тема 4. Современные направления развития физической химии. (3ч)

М.В.Ломоносов – основоположник физической химии. Роль отечественных ученых в становлении и развитии физической химии.

Общенаучное и прикладное значение физической химии для интенсификации управления и оптимизации процессов химических технологий. Современные направления развития физической химии: лазерная, ядерная, радиационная, плазмохимия, космохимия, химия высокомолекулярных соединений.

4. Тематическое планирование

10 класс

№ п/п	Раздел/тема	Количество часов
1	Тема 1. Химические реакции и процессы.	19

2	Тема 2. Химическая термодинамика.	15
	Всего за год	34

11 класс

№ п/п	Раздел/тема	Количество часов
1	Тема 1. Химическая кинетика.	14
2	Тема 2. Химическое равновесие.	4
3	Тема 3. Поверхностные явления.	13
4	Тема 4. Современные направления развития физической химии.	3
	Всего за год	34